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Abstract: Raman spectroscopy of blood offers significant potential for label-free diagnostics 
of disease. However, current techniques are limited by the use of low laser power to avoid 
photodegradation of blood; this translates to a low signal to noise ratio in the Raman spectra. 
We developed a novel flow cell based Raman spectroscopy technique that provides 
reproducible Raman spectra with a high signal to noise ratio and low data acquisition time while 
ensuring a short dwell time in the laser spot to avoid photodamage in blood lysates. We show 
that our novel setup is capable of detecting minute changes in blood lysate spectral features 
from natural aging. Moreover, we demonstrate that by rigorously controlling the experimental 
conditions, the aging effect due to natural oxidation does not confound the Raman spectral 
measurements and that blood treated with hydrogen peroxide to induce oxidative stress can be 
discriminated from normal blood with a high accuracy of greater than 90% demonstrating 
potential for use in a clinical setting. 

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Raman spectroscopy (RS) is a well-established vibrational spectroscopy technique for 
performing non-destructive, label-free, real-time characterization of chemical mixtures. It 
involves the inelastic scattering of laser light due to vibrations of molecular bonds and provides 
a “chemical fingerprint” of the specimen [1]. RS has been demonstrated to be a powerful 
biomedical diagnostic technique and has been widely applied to detect distinct disease-related 
abnormalities in cells and tissue [2]. The analysis of biofluids such as blood, urine and saliva 
[3] using RS is a rapidly emerging area of research. This is because biofluids present a rich 
source of information related to multiple disease biomarkers and hence offer the potential to be 
a powerful diagnostic and prognostic tool correlating with patient health. Moreover, such 
samples are readily accessible in a minimally invasive manner compared to organ tissue 
biopsies. In particular, RS of blood and its constituents has been investigated as a promising 
approach in a variety of applications ranging from assessing the health status of patients [4,5] 
to applications in forensics [6]. 

Blood is composed of ~50% plasma that mostly contains water, 40-45% red blood cells 
(RBCs) that mostly contain hemoglobin, and relatively small proportion of white blood cells 
(WBCs)/platelets. Although there have been significant efforts in developing in vivo 
applications involving the detection of glucose and other analytes [7,8] in whole blood, the 
majority of applications of RS to detect disease markers in blood have focused on developing 
in vitro assays to investigate the status of RBCs, WBCs or blood plasma and serum, which is 
obtained by removing the dissolved protein fibrinogen and clotting factors from the plasma. 
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For example, proof-of-principle studies have successfully demonstrated that RS of blood 
plasma/serum can discriminate between healthy controls and oral cancer [9], head and neck 
cancer [10], and prostate cancer [11] with sensitivity and specificity above 75%. RS has also 
been applied to investigate intact RBCs and hemoglobin to detect biomarkers related to malaria, 
diabetes, genetic blood disorders, and heart failure [5]. These studies demonstrate the 
significant potential of in vitro RS of blood for disease diagnostics. 

The optical instrumentation and techniques employed for in vitro Raman blood analysis 
have been mainly based on laser tweezers Raman spectroscopy [12,13], surface enhanced 
Raman scattering (SERS) spectroscopy [14,15] and dried drop RS [3,16]. However, there can 
be potential challenges associated with these techniques such as: requirement for isolating the 
RBCs and long data acquisition times involved, in the case of laser tweezers-based optical 
trapping [5]; the lack of reproducibility of the Raman signal in SERS-based detection [17]; and 
sample inhomogeneity in the dried drop methods [18]. In addition, a critical requirement 
common to these techniques is to avoid laser induced photodegradation of the blood caused by 
the strongly absorbing hemoglobin, which also gives rise to a broad fluorescence background 
in the Raman spectra. Longer laser wavelength in the near-infrared is generally preferred in 
order to minimize the fluorescence from hemoglobin, but this typically results in weaker Raman 
signal strength owing to its inverse relationship with the fourth power of the laser excitation 
wavelength [5]. The weak Raman signal can be amplified by increasing the laser power, but 
this increases the risk of photodegradation in the blood. In fact, even at relatively low laser 
power levels of 5 mW (power density of ~2.5 MWcm2) and an acquisition time of ~100 s, the 
785 nm laser beam focused on single trapped RBCs can cause irreversible photodamage of 
hemoglobin [19]. This damage threshold of hemoglobin is even lower at ~0.1 MWcm2 at a 
lower laser excitation wavelength at 632.8 nm [20] and at ~0.01 MWcm2 in the case of a dried 
blood drop sample [21]. However, at such low laser power densities, RS is not ideal and does 
not give an adequate spectrum with a good signal to noise ratio in a short data acquisition time 
using current techniques. 

The present study thus aims to overcome these limitations related to the RS of blood. We 
demonstrate for the first time a novel flow cell based RS technique to provide reproducible 
Raman spectral measurements of blood lysate at 785 nm. The use of lysed blood (blood lysate) 
instead of individual RBCs is advantageous since it simplifies sample preparation and 
accessibility: there is no additional preparation step of RBC isolation and blood samples can be 
conveniently frozen at 80 °C until use. Moreover, it simplifies the Raman spectroscopy setup 
as it does not involve optical trapping of cells. We show that flowed blood measurements are 
advantageous over static blood measurements that are representative of current techniques and 
that the short dwell time of 0.4 s in the laser spot with a power density of less than 0.2 MWcm2 
avoids photodamage and still provides a high signal to noise ratio. The other advantages of the 
setup constructed from off-the-shelf optical components include i) ease of sample manipulation 
using a reusable quartz flow cell ii) optimized excitation and collection of the Raman scattered 
light using a water immersion objective iii) homogenous sampling of the blood lysate volume 
due to an adjustable flow rate and iv) access to a large data set of Raman spectra for a given 
blood lysate sample, without manual sample placement and alignment. We show that our novel 
setup is capable of detecting minute changes in blood lysate spectral features from natural 
aging. Moreover, we demonstrate that by rigorously controlling the experimental conditions, 
the aging effect does not confound the Raman spectral measurements and that blood treated 
with hydrogen peroxide to induce oxidative stress, can be discriminated from normal blood 
with an accuracy of greater than 90%. 
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2. Materials and methods 

2.1 Samples 

Peripheral blood was drawn with informed consent from healthy volunteers following 
procedures approved by Health Canada’s Research Ethics Committee (REB-2002-012). Blood 
was drawn via periphery venipuncture into 2 x 10 ml EDTA vacutainer tubes (Becton 
Dickinson and Company, Franklin Lakes, NJ). 3 ml of blood taken from one donor was 
aliquoted into 5 ml flow tubes (BD Biosciences, San Jose, CA, USA). The blood was rocked at 
room temperature for three hours and then immediately frozen at 80 °C to induce hemolysis. 
Frozen blood samples were thawed overnight in a 4 °C fridge. Thawed blood lysate samples 
were mixed gently and drawn inside a 1 mL syringe for measurements with the flow cell based 
RS setup as described in Section 2.2. This procedure was repeated three times using the same 
donor. The measurements were acquired using blood lysate that was flowing as described in 
Section 2.2 or in static form. In this case, the blood lysate was pumped into the flow cell and 
then held static in the flow cell for measurement with the syringe pump turned off. The blood 
lysate sample will be simply referred to as ‘blood’ in the rest of the article except when noted 
otherwise. 

Oxidative stress was induced in fresh blood by treatment with hydrogen peroxide, a source 
of reactive oxygen species [22]. Fresh blood samples were aliquoted into 3 ml and placed into 
flow tubes. Hydrogen peroxide at the appropriate concentration was added drop-by-drop to the 
blood. Samples comprised two controls (no peroxide) and two dosed samples that were 
prepared at 20 mM and 100 mM using a 30% hydrogen peroxide stock solution (Sigma-Aldrich, 
Canada, Oakville, ON, Canada). Following treatment with hydrogen peroxide, the samples 
were kept on a rocker for three hours and then immediately frozen at 80°C until Raman 
acquisitions. 

2.2 Construction of the flow cell-based Raman spectroscopy setup 

Figure 1 shows a schematic of the custom-built Raman spectroscopy and flow cell setup. 
Raman excitation is provided by a variable power, multi-mode 785 nm diode laser (Ondax, 
Monrovia, CA, U.S.A.) with a maximum power of 500 mW coupled into a 100 µm core, 0.22 
NA multimode fiber. A lens of focal length 40 mm (lens L1 in Fig. 1) collimates the multimode 
fiber-coupled output such that it slightly overfills the back aperture of a 60X, 1.1 NA water 
immersion microscope objective (Olympus Canada Inc., Richmond Hill, ON, Canada). A 785 
nm band pass filter (Iridian, Ottawa, ON, Canada) is inserted in the incident laser beam path to 
remove the fluorescence generated in the fiber. The use of a water immersion objective instead 
of an air objective to focus the laser on the blood lysate sample enables better matching of the 
refractive indices across the blood/quartz and water interface and thus results in higher Raman 
signal collection [23]. The multimode laser beam is focused to a spot whose lateral diameter 
and depth of focus was measured to be 12 µm and 25 µm respectively [24]. The lateral diameter 
of the laser spot was empirically determined from a calibrated bright field image of the focused 
laser spot while the depth of focus was determined by acquiring Raman spectra from various 
heights at the surface of a polystyrene dish [25]. The laser power density can be varied from 0 
- 165 kWcm2 at the sample focal plane corresponding to 0 - 200 mW of average power. Raman 
scattered light from the sample is collected by the objective and passed through a 785 nm long 
pass dichroic mirror (Iridian) and two long pass edge filters (Iridian) to completely remove the 
laser excitation. This is coupled to a 300 µm core multimode fiber (Thorlabs, Newton, NJ, 
U.S.A.) which delivers the Raman signal to a Tornado HyperFlux U1 spectrometer (Tornado 
Spectral Systems, Toronto, ON, Canada). The setup also includes a bright-field imaging 
capability utilizing a white LED source and CCD camera (Thorlabs) in the back-reflection 
configuration; this subsystem is useful for setting an appropriate flow rate inside the flow-cell 
as described below in Section 2.3.1. 
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The Raman flow cell consists of a quartz capillary tube and two syringe pumps. The thin-
walled (0.01 mm) capillary tube is composed of boron-rich quartz and has an internal diameter 
of 1.5 mm (Charles Supper Company, Natick, MA, U.S.A.). This is embedded within a 
lengthwise channel milled atop a solid (25 mm x 50 mm) aluminum slide and held in place 
from either end using duct tape. The slide is secured on an aluminum round block of diameter 
55 mm and height 15 mm for mounting on an automated xyz stage (Applied Scientific 
Instrumentation Inc., Eugene, OR, U.S.A.). A well of diameter 5 mm and depth 1 mm in the 
round aluminum block traps a drop of water over the quartz capillary tube, allowing the water 
immersion objective to be used. 

 

Fig. 1. (a) Schematic of the Raman spectroscopy probe consisting of Lenses L1 – L5; BPF: 785 
nm bandpass filter; EF1 and EF2: > 800 nm edge filters to transmit the Raman light only, DM1 
and DM2 are dichroic mirrors (b) Close-up photograph of the water-immersion objective to 
excite and collect the laser and Raman-scattered light respectively from the blood sample in the 
flow cell. 

Flow through the capillary was achieved using two syringe pumps (New Era Pump Systems, 
Farmingdale, NY, U.S.A.) and two 1 mL syringes (BD, Franklin Lakes, NJ, U.S.A.). The 
pumps were paired such that the pump with sample provided positive pressure and the second 
(empty) pump provided negative pressure, achieving steady flow of the sample through the 
system. At the end of measurements, pump direction was reversed such that all sample returned 
to the first syringe. The system could be reused by flushing any remaining sample out first with 
100% sodium hypochlorite (bleach), followed by three times flushing with distilled water. 

2.3. System characterization methods 

Initial characterization of the flow-cell based RS setup was performed to establish optimal 
parameters related to the sampling depth inside the flow cell, the flow rate, laser power density 
and exposure time. The objective was to minimize the laser exposure time without sacrificing 
Raman signal strength. 

2.3.1. Flow cell characterization 

Flow properties of the system were characterized by axial velocity measurements of 5 µm 
polystyrene beads (Phosphorex Inc., MA, U.S.A.) in water flowing through the system. A series 
of bright field images of the flowing beads at a given depth inside the tube were analyzed in 
ImageJ, to determine the flow velocity at that depth. This method was repeated at different 
depths inside the tube. 

2.3.2. Measurement of the Raman signal for flowed and static blood 

The characterization of the Raman signal was done on static (syringe pump off) and flowed 
blood (syringe pump on) with the objective of determining the performance of the flowed blood 
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measurements compared to static blood measurements that represent current techniques. For 
the comparison between static and flowed blood, 14 static time series (STS) and 14 flow time 
series (FTS) were collected for three different samples of blood from the same donor. Each 
time series was composed of 100 consecutive 2s Raman spectra. The laser was initially 
shuttered and the blood was static. Then the blood was flowed with a dwell time of 0.4 s, or 30 
µm/s at the focal depth, for a 30 s duration to reach a steady-state flow condition. The laser was 
un-shuttered and a 200 s time series of the flowed blood was acquired. After the FTS, the laser 
was shuttered and the flow continued for 30 s to obtain a fresh sample of blood. The flow was 
stopped and the system was allowed to settle to a static state (zero flow) over 60 s. Then the 
laser was un-shuttered again and a single volume of blood was exposed to the laser for 200 s 
corresponding to a single STS. Finally, the laser was re-shuttered and the same method repeated 
until a total of 14 STS and 14 FTS were acquired. 

For the dependence of the Raman signal on laser power, the laser power was set to 
maximum of 187 mW at the sample and the power density at the sample was varied using 
neutral density filters. 5 STS and 5 FTS were each gathered for a low (20 kWcm2), medium 
(83 kWcm2), and high (165 kWcm2) laser power density corresponding to average power of 
23, 94 and 187 mW respectively at the sample. 

2.4. Raman spectral measurements of normal and hydrogen peroxide treated blood 

This study was performed on blood flowing in the quartz tube at a flow rate of 2.2 uL/min with 
a dwell time of 0.22 s of the laser exposure and a power density of 120 kW cm2. The total 
measurement time Tm, for one blood sample, including the time for loading the blood sample 
into the flow cell, the time for acquiring 500 Raman spectra of flowed blood, followed by the 
time for cleaning of the flow cell, was carefully monitored. A protocol was developed so that 
each control or peroxide treated blood sample was exposed to ambient oxygen for the same 
amount of time Tm. This ensured that each blood sample had been oxidized/aged by the same 
amount. The typical Tm was 50 minutes and measurements were performed in triplicate for each 
dose group. 

2.5. Spectral processing and statistical analysis 

The Raman spectra were background corrected using a baseline subtraction algorithm known 
as SNIP [26] and normalized using vector normalization. The SNIP technique determines a 
baseline to subtract from the spectrum by finding the minimum between a given point and the 
average value of the outer edges of a window centered on that point. This is done iteratively 
with the window size reducing by one on either side until it reaches a size of 1, at which point 
it stops. An initial window width of 111 indices was used for this experiment. 

Welch’s t-test was used to evaluate Raman spectral differences between the initial 20 s (first 
10 spectra) and the final 20 s of data acquisition over 14 time series of 200 s each, for static and 
flowed blood. The Wilcoxon rank sum test was used to test for statistically significant 
differences (p < 0.05) between the median ratio of specific Raman band intensities for blood 
treated with 20 mM and 100 mM concentration of hydrogen peroxide relative to the median 
ratio for the control blood. 

Principal component analysis (PCA) and Linear Discriminant Analysis (LDA) was 
performed in Mathematica (Wolfram Research, IL, U.S.A.) using standard algorithms. PCA is 
an unsupervised classification tool used to reduce the dimensionality of the data while 
preserving most of the variations (both what is sought for and the random noise). It produces a 
new set of orthogonal variables, called principal components (PCs). PCA-LDA is a technique 
that uses PCA for dimensional reduction of the spectroscopic data set and LDA for the 
supervised classification of this prepared data set. LDA finds the direction in PC space along 
which the difference between the two classes is maximal relative to the random variations. 
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3. Results and discussion

3.1 System characterization results

The experiments and data analysis were aimed at determining the optimal experimental 
conditions for the Raman spectra of blood. 

3.1.1 Characterization of the flow cell 

The Raman spectra for static blood were obtained as a function of the depth inside the flow cell 
as shown in Fig. 2(a). At a depth of 0 µm at the surface of the quartz tube, the Raman spectrum 
is dominated by the Raman signal from quartz. The intensity of the Raman signal from 100 - 
600 µm deep inside the flow cell has ~5% attenuation per 100 µm as seen in Fig. 2(a). Thus, a 
depth of 100 µm gives the maximum Raman signal while minimizing the quartz background. 
Based on these data, the depth of measurement for the Raman spectra of blood was fixed at 100 
µm for the rest of this study. 

Fig. 2. (a) Raman spectra of blood at varying depths inside the flow cell. (b) Parabolic velocity 
distribution of 5 µm polystyrene beads in water flowing through the quartz capillary tube, 
obtained by increasing the depth of the laser focal spot into the tube. 

The velocity of a fluid flowing in a tube of diameter d as a function of distance r from the 
center of the tube is described by the following equation [27] 
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where the velocity at the center of the tube is v0. The flow rate Q can be expressed as 
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In our measurements, the laser is focused at a depth dfocal of 100 µm below the surface of the 
quartz tube of diameter d = 1.5 mm (radius R = 0.75 mm). For the dwell time tdwell, the time that 
a given volume of blood would be exposed to the focused laser spot of 12 µm diameter at this 
depth, the velocity v(r) is 
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To standardize a flow rate, the requirement was set such that a given volume of blood would 
be exposed to the focused laser spot for tdwell = 0.4 s. This meant that for a Raman data 
acquisition time of 2 s, the Raman signal would be sampled from at least 5 different blood 
volumes flowing at a velocity of 30 µm/s. From Eqs. (1) and (2), the flow rate was estimated 
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to be Q = 5.5 µL/min and the flow rate on the syringe pump was set to this value for all the 
results reported here. Results of the measurements of the velocity of 5 µm polystyrene beads in 
water flowing through the quartz capillary tube as described in Section 2.3.1, are plotted in Fig. 
2(b). A parabolic distribution of axial velocity vs. depth in the tube, that is characteristic of 
laminar flow, is evident in Fig. 2(b). Furthermore, the Reynolds number for the flowing blood 
was calculated to be 0.024 for the flow rate used. This places the blood in the very low Reynolds 
number regime [28,29] and fulfills the R < 2400 requirement for laminar flow. 

3.1.2. Raman spectra of blood at varying laser power densities 

Raman spectra were obtained from flowed and static blood at three different laser power 
densities. As shown in the representative data in Fig. 6 in the appendix, the Raman spectra are 
dominated by the vibrational modes of hemoglobin as expected. The tentative molecular band 
assignments are given in Table 1 in the appendix and are consistent with previous reports of 
Raman spectra of whole blood and RBCs [15,30]. It is important to note that the Raman spectra 
do not show any evidence of new peaks at 975, 1248, 1366 and 1396 cm1 even at the highest 
power density (165 kWcm2) employed. These peaks appear if there is photodegradation 
associated with protein denaturation or hemoglobin aggregation [19,20,30,31]. The absence of 
these Raman peaks in our measurements suggests that the blood samples are not being 
photodamaged at the laser powers and exposures times employed. 

3.2. Detection of aging effects in the Raman spectra of blood 

The flow cell based RS setup is highly sensitive in detecting changes in blood as it ages due to 
auto-oxidation. Figure 3 shows a comparison of the mean of the Raman spectra of the first and 
last time series separated by 160 minutes for the static blood and flowed blood. The 
fluorescence background decreases as a function of time for both static and flowed blood in 
Fig. 3(a) and Fig. 3(b). The mean of the background-subtracted Raman spectra for the first and 
last time series for static and flowed blood, are shown in Fig. 3(c) and 3(d) respectively. The 
difference spectra between the first and last time series for static blood and flowed blood are 
shown in Fig. 3(e) and 3(f). Similar changes are evident in the intensities of Raman peaks for 
the static and flowed blood. This is expected since the blood aging process will affect both 
static and flowed blood. In particular, there is a significant increase in the intensity of the Raman 
peaks at 570, 1224, 1375, 1398, 1582 and 1635 cm1 and a decrease in the intensities 
corresponding to the 788, 1211, 1545 and 1604 cm1 Raman peaks in the mean spectrum 
corresponding to the last time series. These Raman bands are highlighted in Fig. 3(c) – 3 (f). 

The Raman peak at 570 cm1 is associated with the FeO2 stretching of the central iron atom 
of the globin unit and the peak at 1635 cm1 corresponds to the asymmetric C-C stretching 
mode of the porphyrin skeleton in the hemoglobin molecule. Both of these peaks are known to 
be sensitive to the oxygenation status of the hemoglobin molecule and increase in intensity 
upon oxygenation [32,33]. The peaks at 1211 and 1224 cm1, correspond to the methane 
deformation mode and are sensitive to the changes in the deformation angle of the methane 
group that are caused by conformational changes in the hemoglobin. A decrease in the intensity 
of the 1211 cm1 Raman peak with a concomitant increase in the intensity of the 1224 cm1 
peak correlates with the increase in the oxygenation state of the hemoglobin molecules 
[20,30,32,33]. The vibration modes at 1341, 1375 and 1390 cm1 associated with the pyrrole 
half ring stretch are considered to be the oxidation state markers of the central iron atom within 
the porphyrin macrocycle. The increase in the intensity of the peaks at 1375 and 1390 cm1 as 
seen in the mean spectrum of the last time series indicates the conversion from the ferrous (Fe+2) 
to the more oxidized ferric (Fe+3) state. 
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Fig. 3. Comparison of the Raman spectra from the first and the last time series separated by 160 
minutes. Mean intensity along with a 95% confidence interval of the Raman spectra in the first 
(red) and last (blue) time series for (a) static blood and (b) flowed blood. Background-subtracted 
Raman spectra for the first and last time series separated by 160 minutes for (c) static blood and 
(d) flowed blood. Difference spectrum between the first and last time series for (e) static blood 
and (f) flowed blood.

The Raman peaks at 1546, 1563, 1582, 1603, 1620 and 1635 cm1 correspond to the in-
plane vibration modes of the porphyrin and correlate with the spin state of the iron atom. A 
decrease in the intensity of the Raman peaks at 1546 and 1604 cm1 with an accompanying 
increase in the intensity of the 1582 and 1635 cm1 Raman peaks signifies a transition of Fe 
from a high spin state to a low spin state, which is a characteristic of oxygenated hemoglobin 
[30–32]. This is consistent with earlier reports related to the Raman spectra of aged blood 
[15,21,34]. Therefore, our experiments reveal changes in the Raman spectra that are consistent 
with the natural aging of blood due to auto-oxidation. 

3.3. Comparison of the Raman spectra of flowed and static blood 

Figures 4(a) and 4(b) show the mean intensity along with a 95% confidence interval of the first 
10 (red), middle 10 (blue) and last 10 (green) Raman spectra in the first STS (a) and FTS (b) 
over 200 s for one data set. It is evident that the background fluorescence decreases with time 
in the static blood but not in the flowed blood. This is consistent with the well-known 
photobleaching effect in blood [35]. We next set out to determine whether there was a 
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significant difference in the Raman spectral peak intensities as a function of time, for a single 
time series corresponding to static and flowed blood. The mean intensity and standard deviation 
of the Raman spectra after background subtraction corresponding to the first 10 (red) and last 
10 (blue) spectra of 14 time series for one data set are plotted for static blood (c) and for flowed 
blood (d) respectively. Welch’s t-test was performed to determine if the group (n = 14) of the 
mean intensity of the Raman peaks in the first 10 spectra of all 14 time series was significantly 
different from that of the last 10 spectra of all 14 time series, for static and flowed data sets. 

 

Fig. 4. Plot of the mean intensity and along with a 95% confidence interval of the first 10 (red), 
middle 10 (blue) and last 10 (green) Raman spectra in the first time series for (a) static blood 
and (b) flowed blood. (c) and (d) Background-corrected Raman spectra showing the mean 
intensity and standard deviation of the first 10 (red) and last 10 (blue) spectra of all 14 time 
series for (c) static blood and (d) flowed blood. The mean of (n = 14 time series) difference 
spectra between the mean of the first 10 spectra and the last 10 spectra for each time series, along 
with 95% confidence interval, for static (e) and flowed blood (f). 

It is evident that there are significant differences in the Raman spectra (p < 0.05) as a 
function of time for static blood; these are indicated by a * in the plots. In contrast, there are no 
differences in the Raman spectra over 200 s in the flowed blood (Fig. 4(d)). This is also seen 
in Fig. 4(e) and 4(f) which displays the mean of (n = 14 time series) difference spectra between 
the mean of the first 10 spectra and the last 10 spectra for each time series, along with 95% 
confidence interval, for static and flowed blood respectively. The longer laser exposure time of 

                                                                      Vol. 10, No. 5 | 1 May 2019 | BIOMEDICAL OPTICS EXPRESS 2283 



200 s for the static blood volume could be causing photoinduced oxidation in the static blood 
as shown in previous reports [21,36–38]. In contrast each flowed blood volume is exposed to 
the focused laser spot for only 0.4 s at the 100 µm depth inside the quartz flow cell. This 
exposure time is too short to cause any noticeable changes in the Raman spectra. Hence the 
flowed blood yields more reproducible results. 

3.4. Discrimination between normal and hydrogen peroxide treated blood 

The flow cell based RS technique was tested to determine if biochemical differences between 
blood treated with different doses of hydrogen peroxide could be detected despite the effects of 
auto-oxidation of blood. Flowed blood measurements were performed under strictly controlled 
conditions as described in Section 2.4. Figure 5(a) shows the mean of the Raman spectra along 
with the 95% confidence interval for the mean for the data from three separate sets of Raman 
spectral measurements for each of the control blood (n = 4455 spectra) and dosed blood samples 
(n = 1485 spectra for 20 mM and n = 1485 spectra for 100 mM concentration of hydrogen 
peroxide). It should be noted that the blood samples are from a single donor and measurements 
were made over 3 days using 3 technical replicates. 

 

Fig. 5. (a) Mean of the Raman spectra along with the 95% confidence interval corresponding to 
control blood (n = 4455) and blood treated with 20 mM (n = 1485) and 100 mM concentration 
(n = 1485) of hydrogen peroxide. (b) Tukey style box plots showing the variation in the ratio of 
the intensity of Raman bands at: 1212 cm1 and 1224 cm1; 1340 cm1 and 1375 cm1; 1549 and 
1582 cm1; and 1604 cm1 and 1637 cm1 for each dose group. Black boxes consist of all spectra 
for a given dose, while grey boxes are all spectra for a given day for a given dose. Outliers have 
been left out for clarity and * indicates statistically significant differences (p < 0.05) between 
the median ratios for the dosed group relative to the control group using all spectra. (c) PCA 
scatter plot for a Raman data set of three control samples (Control-1,2,3) and the two dosed 
samples (Dose-1 and Dose-2 correspond to 20 mM and 100mM concentration of hydrogen 
peroxide). The order of the plot legend reflects the order of consecutive measurements. 

There are very small differences noticeable in Fig. 5(a) at 1212, 1224, 1375, 1549, 1604 
and 1637 cm1 which are known to be Raman biomarkers for oxidation [38]. Figure 5(b) is a 
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compilation of Tukey style box plots using this data to show the variation in the ratio of the 
intensity of Raman bands at: 1212 cm1 and 1224 cm1; 1340 cm1 and 1375 cm1; 1549 and 
1582 cm1; and 1604 cm1 and 1637 cm1. The Wilcoxon rank sum test revealed that there is a 
statistically significant shift (p < 0.05) towards decreasing values for the median ratio (black 
boxes in Fig. 5(b)) of the blood treated with 20 mM and 100 mM concentration of hydrogen 
peroxide relative to the median ratio for the control blood in each of the four subplots. This 
tendency of the decreasing intensity ratio of the marker Raman bands corresponds to the 
increasing oxygenation of the blood associated with the higher concentrations of hydrogen 
peroxide treatment and is consistent with earlier reports [36–38]. 

PCA was performed on each data set consisting of three control samples and the two dosed 
samples (n = 480 per sample, after removing the top and bottom 2% of the total intensity 
distribution). A scatter plot of the scores for the first two PCs of one Raman data set (Fig. 5(c)) 
shows excellent clustering of individual Raman spectra as a function of the hydrogen peroxide 
dose. PCA-LDA of this data set produced a classification accuracy of close to 99.8%. After 
combining three different data sets, the classification accuracy was lowered to ~90%. This type 
of batch effect has been observed earlier [39]. Even better control of sample preparation and 
processing conditions should reduce this batch effect. 

4. Conclusion 

The RS technique involving a custom-built flow cell setup demonstrated in this work, provides 
reproducible results from flowed blood lysates with a high signal to noise ratio and without 
photodamage. Current RS techniques that measure Raman spectra from static blood samples in 
the form of a drop or from RBCs, are not only susceptible to photodamage, but are extremely 
labour-intensive [5,21]. This is because they involve considerable sample manipulation for 
obtaining a large data set that is an unbiased representation of the sample population. In 
contrast, our technique does not require additional sample preparation steps of isolating RBCs 
and does not involve long integration times. The automated and reusable flow cell design of 
our RS technique enables homogenous sampling and makes the collection of a large data set of 
Raman spectra from different blood samples easily feasible. The optimized excitation and 
collection of the Raman scattered light using a water immersion objective lens provides 
sensitive detection of pathological changes in the Raman spectra of blood. In fact, we 
demonstrate that our technique is capable of detecting very small differences due to the aging 
effect in blood (e.g. oxygenation state). Moreover, we show that by rigorously controlling the 
experimental conditions for sample testing, our technique is able to overcome external 
interfering factors such as aging, and detect small differences in blood exposed to oxidative 
stress induced by hydrogen peroxide. By using a smaller (micro) capillary tube as a sample 
holder, our method could be readily applied to smaller (100 μL) volumes of blood or other 
sample fluids that are more difficult to obtain clinically. The optical setup could be further 
compacted for portability, enabling clinical translation and further support of retrospective 
biodosimetry. In this latter case the use of frozen lysed blood offers the practicality of sample 
preservation where immediate analysis is not possible. The same technique could readily be 
applied to investigate other individual blood components such as RBCs, WBCs, plasma and 
serum. 
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Appendix 

 

Fig. 6. Raman spectra of flowed blood at high (165 kWcm2), medium (83 kWcm2), and low 
(20 kWcm2) laser power densities. 

Table 1. Tentative molecular assignments for the main peaks observed in the Raman 
spectra of lysed human blood [12,15,29]. Abbreviations: (ν) & (δ) in-plane modes, (γ) out-

of-plane modes, (str) stretch, (p) protein, (Phe) and phenylalanine. 

Raman Shift ( 1cm ) 
 

Assignment 

413 δ (Fe-O-O) 
518 protein: S-S stretching 
568 ν (Fe-O2) 
622 Phenylalanine: C–C twist 
644 protein: C-S stretching 
677 ν7 
716 γ11 
754 ν15 
787 ν6 
826 γ10 
855 γ10 
899 protein: C-C skeletal 
935 ν46 
979 protein: skeletal vibration or deoxyribose 

1002 phenylalanine 
1032 δ (CH2) 
1077 δ ( = CbH2)asym asymmetric stretching 
1127 ν5 
1157 ν44 
1172 ν30 
1211 ν5 + ν18 
1223 ν13 or ν42 
1307 ν21 
1341 ν41 
1376 ν4 
1399 ν20 
1450 δ (CH2 - CH3) 
1549 ν11 
1563 ν19 
1582 ν37 
1604 hemoglobin: ν (C = C) 
1619 hemoglobin: ν (C = C) 
1638 ν10 
1654 Amide I 
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